动力设备网 加入收藏  -  设为首页
您的位置:动力设备网 > 科技 > 正文
中期风电功率预测
中期风电功率预测
提示:

中期风电功率预测

中期风电功率预测时间尺度为数周或者数月,这一时间尺度内的风功率波动与风电场或电网的检修维护计划有关。 一、风电功率预测分类 风电功率预测的分类方式有很多,大体总结有以下分类方式: 1、按照预测的物理量可分为:预测风速输出功率和直接预测输出功率。 2、按照数学模型可分为:持续预测、时间序列模型预测、卡尔曼滤波法和神经网络的智能方法预测。 3、按照输入数据可分为:不采用数值天气预报法和采用数值天气预报法。 4、按时间尺寸可分为:超短期预测、短期预测和中长期预测。其中按时间尺寸分类普遍被大家认可,应用最为广泛。 其中超短期预测、短期预测和中长期预测: 1、超短期风电功率预测时间尺度为0-4h、15min滚动预测,时间分辨率为15min,主要用于实时调度,解决电网调频问题。 2、短期风电功率预测时间尺度为0-72h,时间分辨率为15min,主要用于合理安排常规机组发电计划,解决电网调峰问题。 3、中长期风电功率预测时间尺度为数周或者数月,这一时间尺度内的风功率波动与风电场或电网的检修维护计划有关。 二、风电功率预测方法 风功率预测方法可以分为:一种方法是根据数值天气预报的数据,用物理方法计算风电场的输出功率;另一种方法是根据数值天气预报与风电场功率输出的关系、在线实测的数据进行预测的统计方法。 综合方法则是指物理方法和统计方法都采用的方法。

中期风电功率预测是指
提示:

中期风电功率预测是指

中期风电功率预测是指:预测风电场次日零时起到未来240h的有功功率。 注:时间分辨率15 min。 ——引自GB_T 19963.1-2021《风电场接入电力系统技术规定 第1部分-陆上风电》 风电产业。 风电产业发展迅速,已经成为能源发展的重要领域。风电并网容量迅猛增加,风电与系统之间的联系越来越密切,必须考虑风能的波动性和间歇性引起风电出力的变化给电力系统电能质量、安全稳定运行和经济效益带来的不利影响。 因此,进行风电功率预测具有重要的现实意义。 随着风电大力发展,风电场建设规模的扩大,在分析风电场接入电力系统时,需要考虑风电场输出功率波动范围大的特点。风能具有间歇性和随机波动性,风速的变化直接导致风电场的有功功率和无功功率的变化,输出功率很不稳定。 当风电穿透全运行会产生严重的影响,同时也会影响电能质量和经济调度以及电力竞价。因此,积极开展风电功率预测研究工作,提高预测的准确性,对电网调度、提高风电的接入能力以及减少系统运行成本等方面具有现实意义。 风电功率预测是指以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率。 风电功率预测实际包括两个方面:一、风电场建设前期的出力预测,也就是风能资源评估和风电场选址工作;二、风电场建设完成,投运发电之后的风电功率预测。

哪家公司可以做风电功率预测系统
提示:

哪家公司可以做风电功率预测系统

在风电功率预测技术研究方面,经过近20年的发展,风电功率预测已获得了广泛的应用,风电发达国家,如丹麦、德国、西班牙等均有运行中的风电功率预测系统。
德国太阳能技术研究所开发的风电管理系统(WPMS)是目前商业化运行最为成熟的系统。德国、意大利、奥地利以及埃及等多个国家的电网调度中心均安装了该系统,目前该系统对于单个风电场的日前预报精度约为85%左右。丹麦RisØ国家可再生能源实验室与丹麦技术大学联合开发了风电功率预测系统Zephyr,目前丹麦所有电网公司均采用了该预测系统。此外,美国、西班牙、英国、法国、爱尔兰等风电发展较快的欧美国家纷纷开始开发和应用风电功率预测系统,其中较为成熟的产品还有美国True Wind Solutions公司开发的E-Wind,法国Ecole des Mines de Paris公司开发的AWPPS,西班牙马德里卡尔洛斯第三大学开发的SIPREóLco以及爱尔兰国立科克大学与丹麦DMI联合开发的HIRPOM。
近年来,国际风电功率预测研究的重点已经转向开发更高级的预测模型,强调研发适用于复杂地形、极端天气条件以及海上风电场的预测技术。在2002年欧盟启动的“开发下一代陆上与海上风电场风能预测系统”项目(“Development of a Next Generation Wind Resource Forecasting System for the Large-Scale Integration of Onshore and Offshore Wind Farms” - ANEMOS )的支持下,涌现出大量新的预测方法,如结合统计法与物理法的混合预测法、小气候模型与中尺度气象模型的结合、多个中尺度模式的集合预报等。新预测方法的提出对提高预测结果的精度,拓宽预测方法的适应性具有重要意义。