动力设备网 加入收藏  -  设为首页
您的位置:动力设备网 > 科技 > 正文
小波变换
小波变换
提示:

小波变换

傅里叶变换的不足: 想知道各个成分出现的时间。知道信号频率随时间变化的情况,各个时刻的瞬时频率及其幅值——这也就是时频分析。 一个简单可行的方法就是——加窗。 把整个时域过程分解成无数个等长的小过程,每个小过程近似平稳,再傅里叶变换,就知道在哪个时间点上出现了什么频率了。”这就是短时傅里叶变换。 使用STFT存在一个问题,我们应该用多宽的窗函数? 窗太窄,窗内的信号太短,会导致频率分析不够精准,频率分辨率差。窗太宽,时域上又不够精细,时间分辨率低。 用窄窗,时频图在时间轴上分辨率很高,几个峰基本成矩形,而用宽窗则变成了绵延的矮山。但是频率轴上,窄窗明显不如下边两个宽窗精确。 高频适合小窗口,低频适合大窗口。 然而STFT的窗口是固定的,在一次STFT中宽度不会变化,所以STFT还是无法满足非稳态信号变化的频率的需求。 频域中提取的特征主要有:FFT系数、熵、能谱密度、功率下降率(Power Decline Rate,PDR)等。 小波函数定义为 其中 是缩放因子,控制小波函数的伸缩; 是平移参数,控制小波函数的平移。缩放因子对应频率,平移参数对应时间。 在缩放因子为 的子空间的投影为 其中小波系数为 代表复共轭。 为了更直观地理解小波变换,先引入 Parseval 定理: 从上式不难看出,只有当小波中心频率与原始信号固有频率接近的时候,小波系数才会取得极大值。因此,小波可以看作是一个只允许频率和小波中心频率相近的信号通过的带通滤波器。通过缩放因子可以得到一系列不同的中心频率,通过平移系数则可以检测时域上不同位置的信号。这样就得到了原信号在各个时间点包含的频率信息。 STFT是给信号加窗,分段做FFT;而小波直接把傅里叶变换的基给换了——将无限长的三角函数基换成了有限长的会衰减的小波基。这样不仅能够获取频率,还可以定位到时间了 傅里叶变换把无限长的三角函数作为基函数: 基函数会伸缩、会平移(其实本质并非平移,而是两个正交基的分解)。缩得窄,对应高频;伸得宽,对应低频。然后这个基函数不断和信号做相乘。 某一个尺度(宽窄)下乘出来的结果,就可以理解成信号所包含的当前尺度对应频率成分有多少。于是,基函数会在某些尺度下,与信号相乘得到一个很大的值,因为此时二者有一种重合关系。那么我们就知道信号包含该频率的成分的多少。这两种尺度能乘出一个大的值(相关度高),所以信号包含较多的这两个频率成分,在频谱上这两个频率会出现两个峰。 小波做的改变就在于,将无限长的三角函数基换成了有限长的会衰减的小波基。 对于突变信号,傅里叶变换存在吉布斯效应,我们用无限长的三角函数怎么也拟合不好突变信号: 尺度函数 : scaling function (在一些文档中又称为父函数 father wavelet ) 小波函数 : wavelet function(在一些文档中又称为母函数 mother wavelet) 连续的小波变换 :CWT 离散的小波变换 :DWT 不同的小波基函数,是由同一个基本小波函数经缩放和平移生成的。 小波变换是将原始图像与小波基函数以及尺度函数进行内积运算,所以一个尺度函数和一个小波基函数就可以确定一个小波变换 连续小波变换 cwt(data, scales, wavelet, sampling_period=1.) 离散小波变换 pywt.dwt(data, wavelet, mode=’symmetric’, axes=-1) 经过小波变换后图像会生成低频信息和高频信息。低频信息对应于求均值,高频信息对应于求差值。 均值是局部的平均值,变化缓慢,属于低频信息,存储图片的轮廓信息,近似信息 差值是局部的波动值,变化较快,属于高频信息,存储图片的细节信息,局部信息,另外含有噪音 是高通滤波器,允许高频信息通过 是低通滤波器,允许低频信息通过 在拼接子图之前,应该先对各个子图进行处理。未处理的情况下,因为高频部分的像素值极小甚至小于0,所以高频区域呈黑色。最简单的处理方式为:将高频信息均加255,得到如下结果: 阈值函数 pywt.threshold (data, value, mode=, substitute=) 信号产生的小波系数含有信号的重要信息,将信号经小波分解后小波系数较大,噪声的小波系数较小,并且噪声的小波系数要小于信号的小波系数,通过选取一个合适的阀值,大于阀值的小波系数被认为是有信号产生的,应予以保留,小于阀值的则认为是噪声产生的,置为零从而达到去噪的目的。 小波阀值去噪的基本问题包括三个方面: 小波基的选择,阀值的选择,阀值函数的选择。 (1) 小波基的选择:通常我们希望所选取的小波满足以下条件:正交性、高消失矩、紧支性、对称性或反对称性。但事实上具有上述性质的小波是不可能存在的,因为小波是对称或反对称的只有Haar小波,并且高消失矩与紧支性是一对矛盾,所以在应用的时候一般选取具有紧支的小波以及根据信号的特征来选取较为合适的小波。 (2) 阀值的选择:直接影响去噪效果的一个重要因素就是阀值的选取,不同的阀值选取将有不同的去噪效果。目前主要有通用阀值(VisuShrink)、SureShrink阀值、Minimax阀值、BayesShrink阀值等。 (3) 阀值函数的选择:阀值函数是修正小波系数的规则,不同的反之函数体现了不同的处理小波系数的策略。最常用的阀值函数有两种:一种是硬阀值函数,另一种是软阀值函数。还有一种介于软、硬阀值函数之间的Garrote函数。 另外,对于去噪效果好坏的评价,常用信号的信噪比(SNR)与估计信号同原始信号的均方根误差(RMSE)来判断。 可以看到API给出了很多小波族,每个小波族又有很多系数可供我们去选择, “相同类的统计特征相近,不同类的统计特征相差很大” ,来挑选小波基函数。 多尺度小波变换一般是3~4层,但是要注意的是,如果实践中所用的图片太小,或者纹理并不丰富,其实用单层的小波变换就足够了。如果你用多层的小波变换,Pywalvets 仍只会返回给你一层变换的结果,因为信息量过小导致不能采样来进一步进行变换。

小波变换的定义及原理
提示:

小波变换的定义及原理

定义:小波变换(wavelet transform,WT)是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。 所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)和频率的局部化分析。 原理:它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 小波变换是空间(时间)和频率的局部变换,因而能有效地从信号中提取信息。通过伸缩和平移等运算功能可对函数或信号进行多尺度的细化分析,解决了Fourier变换不能解决的许多困难问题。小波变换联系了应用数学、物理学、计算机科学、信号与信息处理、图像处理、地震勘探等多个学科。 小波函数源于多分辨分析,其基本思想是将扩中的函数f(t)表示为一系列逐次逼近表达式, 其中每一个都是f(t)动经过平滑后的形式,它们分别对应不同的分辨率。多分辨分析又称多尺度分析,是建立在函数空间概念基础上的理论,其思想的形成来源于工程。创建者Mallat .S是在研究图像处理问题时建立这套理论的。

什么是傅里叶变换?
提示:

什么是傅里叶变换?

傅里叶变换,最牛的算法之一,广泛应用于物理学、信号处理、概率、统计、密码学、声学、光学等领域。有人说,看懂了傅里叶,也就看懂了世界,能改变一个人对世界的认知。 这里我们不深究其中,无数学公式推导,仅为大众简单科普一下傅里叶变换是什么。傅里叶变换最精彩之处就是能够将信号在时域与频域之间进行变换,因此我们先解释一下什么是时域和频域。 ①时域时域(Time domain)是描述数学函数或物理信号对时间的关系,例如一个信号的时域波形可以表达信号随着时间的变化。比如下面这个时域图,1秒内反复振动了5次,频率是5,最大振幅是1,整图描述的是每一个时刻的信号值: ②频域 频域(frequency domain)是描述信号在频率方面特性时用到的一种坐标系,频域图显示了在一个频率范围内每个给定频带内的信号量。上面的时域图用频域表示,则是下图。横坐标表示频率,纵坐标表示振幅。这个图表示:这里面有一段波,频率为5,振幅为1。 另外,频域表示还可以包括每个正弦曲线的相位,以便能够重新组合频率分量以恢复原始时间信号。不同相位决定了波的位置,从频域信息复原到时域信息,相位非常重要。 红色和蓝色正弦波具有θ的相位差 傅里叶变换 先亮一下通用傅里叶公式。(“公式恐惧症”请闭眼滑过...) 傅里叶变换,从定义上讲,表示能将满足一定条件的某个函数表示成三角函数或者它们的积分的线性组合。简单来说,它贯穿了时域与频域,能够将任何形式的周期性信号无限拆解,分为多个有规律的简单正弦波信号。(正弦波是一个圆周运动在一条直线上的投影,所以频域的基本单元也可以理解为一个始终在旋转的圆。) 傅里叶级数方波圆动画 例如下面这种也是有规律的波形,可以拆解为若干组波的叠加。 也就是说,傅里叶变换能够将一段复杂的波,分解成多段规律的、单纯波的集合。然后,对这些规律的波从频域进行描述,就有了整段波的谱线图。 如下图,时域观测的方波信号是若干个正弦信号的叠加,当以时间为横轴时可以看到这些信号累加后得到的时域图像,而换一个角度,当以频率为坐标时,则得到的是一个个不同频率的脉冲。信号从时域到频域的转换,则是傅里叶正变换,从频率到时域的表示则是傅里叶逆变换。因此,时域和频域是以完全不同的角度表示相同的信息。(突然想吟诗一首:横看成岭侧成峰,远近高低各不同...) 很多在时域看似不可能做到的操作,在频域却很容易,这就是需要傅里叶变换的地方。尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。例如在图像处理中,低频项决定了图像的整体形状,高频项则提供了细节,通过控制滤波器可以过滤掉不同频率的信息,从而决定输出的图像效果。

什么是傅里叶变换?
提示:

什么是傅里叶变换?

1、门函数F(w)=2w w sin=Sa() w。 2、指数函数(单边)f(t)=e-atu(t) F(w)=1,实际上是一个低通滤波器a+jw。 3、单位冲激函数F(w)=1,频带无限宽,是一个均匀谱。 4、常数1 常数1是一个直流信号,所以它的频谱当然只有在w=0的时候才有值,体现为(w)。F(w)=2(w) 可以由傅里叶变换的对称性得到。 5、正弦函数F(ejw0t)=2(w-w0),相当于是直流信号的移位。F(sinw0t)=F((ejw0t-e-jw0t)/2)=((w-w0)-(w+w0))F(sinw0t)=F((e。 6、单位冲击序列jw0t-e-jw0t)/2j)=j((w-w0)-(w+w0)) T(t)=(t-Tn) -这是一个周期函数,每隔T出现一个冲击,周期函数的傅里叶变换是离散的F(T(t))=w0(w-nw0)=w0,w0(w) n=-单位冲击序列的傅里叶变换仍然是周期序列,周期是w0=2T。 傅立叶变换: 傅立叶变换是指将满足一定条件的某个函数表示成三角函数的积分。傅立叶变换是在对傅立叶级数的研究中产生的。在不同的研究领域,傅立叶变换具有不同的作用。 在分析信号的时候 主要考虑的频率、幅值、相位。 傅里叶变换的作用主要是将函数转化成多个正弦组合(或e指数)的形式,本质上变换之后信号还是原来的信号只是换了一种表达方式 这样可以更直观的分析一个函数里的频率、幅值、相位成分。 所以分析一个复杂的信号只需经过傅里叶变换后可以轻易的看出其频率和相位、幅度分量。

matlab 分析语音信号是用的傅里叶级数还是变换
提示:

matlab 分析语音信号是用的傅里叶级数还是变换

matlab自带了短时傅里叶变换的分析函数,也即spectrogram函数。
其使用方式有两种
1. [S,F,T,P]=spectrogram(x,window,noverlap,nfft,fs)
2. [S,F,T,P]=spectrogram(x,window,noverlap,F,fs)
x---输入信号的向量;Window---窗函数;Noverlap---各段之间重叠的采样点数;Nfft---计算离散傅里叶变换的点数;Fs---采样频率Hz;F---在输入变量中使用F频率向量。
对应题主的问题
假设语音信号保存在wave变量中,那么,对其做短时傅里叶变换的函数语句为
[S,F,T,P]=spectrogram(wave,window,noverlap,nfft,fs)
参数可以根据具体信号的特点进行设定。