动力设备网 加入收藏  -  设为首页
您的位置:动力设备网 > 品牌 > 正文
避雷器等防雷设备一般需要在什么地方安装啊?
避雷器等防雷设备一般需要在什么地方安装啊?
提示:

避雷器等防雷设备一般需要在什么地方安装啊?

  避雷器一般是安装在电源接口处,防止因为电击造成家电等电器的设备烧坏。
  避雷器,surge arrester。
  用于保护电气设备免受高瞬态过电压危害并限制续流时间也常限制续流赋值的一种电器。本术语包含运行安装时对于该电器正常功能所必须的任何外部间隙,而不论其是否作为整体的一个部件。
  注1:避雷器通常连接在电网导线与地线之间,然而有时也连接在电器绕组旁或导线之间。
  注2:避雷器有时也称为过电压保护器,过电压限制器(surge divider)。
  用范围
  交流无间隙金属氧化物避雷器用于保护交流输变电设备的绝缘,免受雷电过电压和操作过电压损害。适用于变压器、输电线路、配电屏、开关柜、电力计量箱、真空开关、并联补偿电容器、旋转电机及半导体器件等过电压保护。
  避雷器连接在线缆和大地之间,通常与被保护设备并联。避雷器可以有效地保护通信设备,一旦出现不正常电压,避雷器将发生动作,起到保护作用。当通信线缆或设备在正常工作电压下运行时,避雷器不会产生作用,对地面来说视为断路。一旦出现高电压,且危及被保护设备绝缘时,避雷器立即动作,将高电压冲击电流导向大地,从而限制电压幅值,保护通信线缆和设备绝缘。当过电压消失后,避雷器迅速恢复原状,使通信线路正常工作。
  因此,避雷器的主要作用是通过并联放电间隙或非线性电阻的作用,对入侵流动波进行 削幅,降低被保护设备所受过电压值,从而起到保护通信线路和设备的作用。
  避雷器不仅可用来防护雷电产生的高电压,也可用来防护操作高电压。
  避雷器的作用是用来保护电力系统中各种电器设备免受雷电过
  电压、操作过电压、工频暂态过电压冲击而损坏的一个电器。避雷器的类型主要有保护间隙、阀型避雷器和氧化锌避雷器。保护间隙主要用于限制大气过电压,一般用于配电系统、线路和变电所进线段保护。阀型避雷器与氧化锌避雷器用于变电所和发电厂的保护,在500KV及以下系统主要用于限制大气过电压,在超高压系统中还将用来限制内过电压或作内过电压的后备保护。

避雷器放在哪里?
提示:

避雷器放在哪里?

  避雷器的使用
  1.应安装在靠近配电变压器侧
  金属氧化物避雷器(MOA)在正常工作时与配变并联,上端接线路,下端接地。当线路出现过电压时,此时的配变将承受过电压通过避雷器、引线和接地装置时产生的三部分压降,称作残压。在这三部分过电压中,避雷器上的残压与其自身性能有关,其残压值是一定的。接地装置上的残压可以通过使接地引下线接至配变外壳,然后再和接地装置相连的方式加以消除。对与如何减小引线上的残压就成为保护配变的关键所在。引线的阻抗与通过的电流频率有关,频率越高,导线的电感越强,阻抗越大。从U=IR可知,要减小引线上的残压,就得缩小引线阻抗,而减小引线阻抗的可行方法是缩短MOA距配变的距离,以减小引线阻抗,降低引线压降,所以避雷器应安装在距离配电变压器近点更合适。
  2.配变低压侧也应安装
  如果配变低压侧没有安装MOA, 当高压侧避雷器向大地泄放雷电流时,在接地装置上就产生压降,该压降通过配变外壳同时作用在低压侧绕组的中性点处。因此低压侧绕组中流过的雷电流将使高压侧绕组按变比感应出很高的电势(可达1000 kV),该电势将与高压侧绕组的雷电压叠加,造成高压侧绕组中性点电位升高,击穿中性点附近的绝缘。如果低压侧安装了MOA,当高压侧MOA放电使接地装置的电位升高到一定值时,低压侧MOA开始放电,使低压侧绕组出线端与其中性点及外壳的电位差减小,这样就能消除或减小“反变换”电势的影响。
  3.MOA接地线应接至配变外壳
  MOA的接地线应直接与配电变压器外壳连接,然后外壳再与大地连接。那种将避雷器的接地线直接与大地连接,然后再从接地桩子上另引一根接地线至变压器外壳的作法是错误的。另外,避雷器的接地线要尽可能缩短,以降低残压。
  4.严格按照规程要求定期检修试验
  定期对MOA进行绝缘电阻测量和泄露电流测试,一旦发现MOA绝缘电阻明显降低或被击穿,应立即更换以保证配变安全健康运行。
  避雷器是用于保护电气设备免受高瞬态过电压危害并限制续流时间也常限制续流赋值的一种电器,是通信线缆防止雷电损坏时经常采用的另一种重要的设备。
  特点与原理
  交流无间隙金属氧化物避雷器具有优异的非线性伏·安特性,响应特性好、无续流、通流容量大、残压低、抑制过电压能力强、耐污秽、抗老化、不受海拔约束、结构简单、无间隙、密封严、寿命长等特点。
  避雷器在正常系统工作电压下,呈现高电阻状态,仅有微安级电流通过。在过电压大电流作用下它便呈现低电阻,从而限制了避雷器两端的残压。
  

12伏20安胶体储能电池充电电流应该多大?
提示:

12伏20安胶体储能电池充电电流应该多大?

1、12V的电压不能给12V的蓄电池充电。给12V的蓄电池充电,充电电压应在14V~15V。 2、电压(voltage),也称作电势差或电位差,是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量。其大小等于单位正电荷因受电场力作用从A点移动到B点所做的功,电压的方向规定为从高电位指向低电位的方向。电压的国际单位制为伏特(V,简称伏),常用的单位还有毫伏(mV)、微伏(μV)、千伏(kV)等。此概念与水位高低所造成的"水压"相似。需要指出的是,"电压"一词一般只用于电路当中,"电势差"和"电位差"则普遍应用于一切电现象当中。 3、化学能转换成电能的装置叫化学电池,一般简称为电池。放电后,能够用充电的方式使内部活性物质再生--把电能储存为化学能;需要放电时再次把化学能转换为电能。将这类电池称为蓄电池(Storage Battery),也称二次电池。 一般是三段充电, 第一段恒流充电,电流为10小时充电率就是容量12AH除以10小时=1.2A充电电流, 可以采用6小时充电率,容量12Ah除以6小时=1.66A充电电流。 电压会从12V起上升到14.4V,大于14.4V极板会析气,造成水分过早流失。 这时进行第二阶段恒压充电,电压小于14.4V,电流会自然减小。当小于0.05C时, 充电接近95%。这时充电器转绿灯,再度进行限压13.8V进行涓流充电。再充1-2小时即可。 市面上出售的12AH的充电器一般都是1.7A的。

4块100AH的蓄电池一天就要充满 需要多少瓦的太阳能电池板?
提示:

4块100AH的蓄电池一天就要充满 需要多少瓦的太阳能电池板?

假设4块100AH的蓄电池的电压是40V 需要1333.333瓦的太阳能电池板 计算方法如下: 假设早上、中午、傍晚充电强度相同,一天充电12小时。 4×100×40×3600=57600000(焦耳) P×12×3600=57600000 P=57600000÷3600÷12=1333.333(瓦) 扩展资料: 根据4块100AH,电压是40V的蓄电池存储的能量与太阳能电池板12小时发电量相等计算。 化学能转换成电能的装置叫化学电池,一般简称为电池。放电后,能够用充电的方式使内部活性物质再生——把电能储存为化学能;需要放电时再次把化学能转换为电能。将这类电池称为蓄电池(Storage Battery),也称二次电池。 所谓蓄电池即是贮存化学能量,于必要时放出电能的一种电气化学设备。 蓄电池(Storage Battery)是将化学能直接转化成电能的一种装置,是按可再充电设计的电池,通过可逆的化学反应实现再充电,通常是指铅酸蓄电池,它是电池中的一种,属于二次电池。它的工作原理:充电时利用外部的电能使内部活性物质再生,把电能储存为化学能,需要放电时再次把化学能转换为电能输出,比如生活中常用的手机电池等。 太阳能电池板(Solar panel)是通过吸收太阳光,将太阳辐射能通过光电效应或者光化学效应直接或间接转换成电能的装置,大部分太阳能电池板的主要材料为“硅”,但因制作成本较大,以至于它普遍地使用还有一定的局限。 相对于普通电池和可循环充电电池来说,太阳能电池属于更节能环保的绿色产品。 参考资料来源:百度百科-蓄电池 参考资料来源:百度百科-太阳能电池板

制动能量回收的原理
提示:

制动能量回收的原理

制动能量回收是现代电动汽车与 混合动力 车重要技术之一,也是它们的重要特点。在一般内燃机汽车上,当车辆减速、制动时,车辆的运动能量通过制动系统而转变为热能,并向大气中释放。而在电动汽车与混合动力车上,这种被浪费掉的运动能量已可通过制动能量回收技术转变为电能并储存于蓄电池中,并进一步转化为驱动能量。例如,当车辆起步或加速时,需要增大驱动力时,电机驱动力成为发动机的辅助动力,使电能获得有效应用。一般认为,在车辆非紧急制动的普通制动场合,约1/5的能量可以通过制动回收。制动能量回收按照混合动力的工作方式不同而有所不同。



比如在丰田普锐斯混合动力车上,车辆运动能量能够通过液压制动和能量回收制动的协调控制回收。但在本田Insight混合动力车上,由于发动机与驱动电机连接,所以不能够消除发动机制动。因此,在制动时发动机全部气门关闭,以消除泵气损失,而只存在发动机本身的纯粹的机械摩擦损失。

在发动机气门不停止工作场合,减速时能够回收的能量约是车辆运动能量的1/3。通过智能气门正时与升程控制系统使气门停止工作,发动机本身的机械摩擦(含泵气损失)能够减少约70%。回收能量增加到车辆运动能量的2/3。

制动能量回收系统有什么用
提示:

制动能量回收系统有什么用

车辆在制动或惯性滑行中释放出的多余能量,并通过发电机将其转化为电能,再储存在蓄电池中,用于之后的加速行驶。 制动能量回收系统(Braking Energy Recovery System)是指一种应用于汽车或者轨道交通上的,能够将制动时产生的热能转换成机械能,并将其存储在电容器内,在使用时可迅速将能力释放的系统。 制动能量回收系统包括与车型相适配的发电机、蓄电池以及可以监视电池电量的智能电池管理系统。 制动能量回收系统回收车辆在制动或惯性滑行中释放出的多余能量,并通过发电机将其转化为电能,再储存在蓄电池中,用于之后的加速行驶。这个蓄电池还可为车内耗电设备供电,降低对发动机的依赖、发动机油耗及二氧化碳排放。 制动能量回收系统原理 制动能量回收是现代电动汽车与混合动力车重要技术之一,也是它们的重要特点。在一般内燃机汽车上,当车辆减速、制动时,车辆的运动能量通过制动系统而转变为热能,并向大气中释放。 而在电动汽车与混合动力车上,这种被浪费掉的运动能量已可通过制动能量回收技术转变为电能并储存于蓄电池中,并进一步转化为驱动能量。例如,当车辆起步或加速时,需要增大驱动力时,电机驱动力成为发动机的辅助动力,使电能获得有效应用。 以上内容参考:百度百科——制动能量回收系统