动力设备网 加入收藏  -  设为首页
您的位置:动力设备网 > 品牌 > 正文
液化石油气和天然气的区别是什么?
液化石油气和天然气的区别是什么?
提示:

液化石油气和天然气的区别是什么?

主要区别有,性质不同、含有成分不同、安全性不同,具体如下: 一、性质不同 1、液化石油气 液化石油气是在炼油厂内,由天然气或者石油进行加压降温液化所得到的一种无色挥发性液体。 2、液化天然气 液化天然气是天然气经压缩、冷却至其沸点(-161.5℃)温度后变成液体。 二、含有成分不同 1、液化石油气 主要组成成分为丙烷、丙烯、丁烷、丁烯中的一种或者两种,而且其还掺杂着少量戊烷、戊烯和微量的硫化物杂质。 2、液化天然气 主要成分是甲烷,被公认是地球上最干净的化石能源。 三、安全性不同 1、液化石油气 液化石油气是一种有毒性的气体,但是这种毒性的挥发是有一定条件的。只有当液化石油气在空气中的浓度超过了10%时才会挥发出让人体出现反应的毒性。 2、液化天然气 无色、无味、无毒且无腐蚀性。

煤气、天然气、液化石油气它们有什么区别?
提示:

煤气、天然气、液化石油气它们有什么区别?

它们的来源不同,主要成分也不同。
煤气是以煤为原料加工制得的含有可燃组分的气体。根据加工方法、煤气性质和用途分为:煤气化得到的是水煤气、半水煤气、焦炉煤气等。
水煤气是由水蒸气和高温碳反应而获得的。主要成分是一氧化碳、氢气,有微量CO2、HC和NOX,燃烧后排放水和二氧化碳。半水煤气的可燃成分与水煤气相同,主要是氢气和一氧化碳,还含有氮气,氧气,水蒸气等。焦炉煤气是指用几种烟煤配成炼焦用煤,在炼焦炉中经高温干馏后,在产出焦炭和焦油产品的同时所得到的可燃气体,是炼焦产品的副产品。焦炉煤气主要由氢气和甲烷构成,分别占56%和27%,并有少量一氧化碳、二氧化碳、氮气、氧气和其他烃类。
天然气主要是由低分子的碳氢化合物组成的混合物,成分以甲烷为主,还含有乙烷、丙烷和丁烷等。根据天然气来源一般可分为五种:气田气(或称纯天然气)、石油伴生气、凝析气田气、煤层气和页岩气,组成成分都差不多。
液化石油气(简称液化气)是石油在提炼汽油、煤油、柴油、重油等油品过程中剩下的一种石油尾气,通过一定程序,对石油尾气加以回收利用,采取加压的措施,使其变成液体,装在受压容器内,液化气的名称即由此而来。它的主要成分有乙烯、乙烷、丙烯、丙烷和丁烷等,在气瓶内呈液态状,一旦流出会汽化成比原体积大约二百五十倍的可燃气体
煤气不可压缩,不可液化;天然气可压缩,不可液化。液化石油气可压缩,可液化。

天然气的成因类型及特点
提示:

天然气的成因类型及特点

根据形成机理,天然气可划分为有机成因气和无机成因气两大类。所谓有机成因气是指分散的沉积有机质或可燃有机矿产 ( 油、煤和油页岩) ,在其成岩成熟过程中,由微生物降解和热解作用形成的以烃气为主的天然气,就目前的研究程度来看,现今发现的天然气绝大部分属于有机成因气。显然,这是一个非常庞大的类型。由前面的叙述可知,根据成气的主要作用因素,可进一步将有机成因气分为生物成因气 ( 包括成岩气) 和热解气,后者是有机成因气的主体。还可根据成气有机质类型的不同再进一步划分: 将由成油有机质 ( Ⅰ、Ⅱ型干酪根) 形成与石油相伴生成的天然气称为油型气; 而将Ⅲ型干酪根和成煤有机质在成煤变质过程中形成的天然气称为煤型气。这样就将天然气划分为四种基本的成因类型,即生物成因气、油型气、煤型气和无机成因气 ( 表 5 -5) 。 表 5 -4 天然气组成的来源 表 5 -5 天然气成因类型 (一)生物成因气 生物成因气是有机质在还原环境下主要由微生物降解、发酵和合成作用形成的以甲烷为主的天然气,有时也包括(或混有)部分早期低温降解作用形成的甲烷气和数量不等的重烃气。 生物成因气形成过程包括一系列复杂的生物化学作用。这一过程从浅处的微生物喜氧呼吸的代谢作用开始,游离氧被消耗,从而进入硫酸盐还原带的厌氧呼吸阶段,使硫酸盐还原为H2S;当继续进入缺硫酸盐的碳酸盐还原带时,在严格的厌氧环境中,微生物发酵作用使不溶有机质(生物聚合物)在酶的作用下变成可溶有机质,进而在产酸菌和产氢菌的作用下变为挥发性有机酸、H2和CO2;H2和CO2在甲烷菌的作用下,最终合成甲烷。因此,碳酸盐还原带是生成生物甲烷的主要生化带(图5-27)。 富含硫酸盐的强还原环境,特别是沉积腐泥型有机质的强还原环境,对产甲烷菌有明显的抑制作用,有机质不易分解出H2和CO2,使生物成因气不能大量生成。在陆相环境中,由于淡水湖泊盐度低,缺少硫酸盐类矿物,腐殖型和混合型有机质易被分解成H2和CO2,并有利于甲烷菌繁殖。甲烷在靠近地表不深的地带即可形成,但由于埋深太浅,大部分被散失或氧化,不易形成规模较大的生物成因气藏。在低气温的极地和深海,浅层形成的烃气可与水结合形成固态气-水合物。在半咸水和咸水湖,尤其是碱性咸水湖有利于有机质保存。直到埋藏一定深度后,有机质才大量分解并使产甲烷菌大量繁殖,合成的甲烷在适当的条件下可聚集成较大规模的气藏。因此,富含腐殖型和混合型有机质的浅海和海陆交互相带,寒冷的极地和深海以及大陆干旱-半干旱的咸水湖泊都是生物成因气形成的有利沉积环境。 有利于生物气形成的因素可大致归纳为:①有丰富的有机质;②严格的缺氧、缺硫酸盐环境;③pH值以接近中性为宜;④温度在35~42℃为最佳。pH值低于6.0或高于8.0,甲烷菌生长和甲烷气产率都会有明显减少;甚至会使甲烷菌中毒,发酵停滞。即使发酵好了,也可能缺CO2;pH值接近8.0时,CO2溶解度趋近于0,也不能生成CH4。虽然有资料表明,产甲烷细菌可以在温度高于100℃时仍能成活,但模拟实验显示,适合甲烷菌大量繁殖并生成甲烷的温度一般低于75℃。在低于75℃的条件下,甲烷的产率随温度上升而增加。主生气带在25~65℃之间(关德师和戚厚发等,1997)。根据发酵的温度,可分低温发酵(<28℃),中温发酵(28-42℃)和高温发酵(>42℃);一般高温发酵具有较高的甲烷产率,因为高温发酵不仅能使有机质较快地转化生成甲烷(或许包含有低温热解的因素),而且有新的甲烷细菌群体出现,产酸和产氢菌类型也有较大改善。 生物成因气化学组成,除个别含N2较多的天然气外,CH4含量一般大于98%,有的甚至在99%以上。重烃含量低,一般少于0.2%,个别可达1%~2%。C1/C+2(干燥系数)一般在数百以上到数千不等,为典型的干气。重烃含量一般随埋藏深度的增加而增加,这已被深海钻探计划提交的研究成果所证实。一般认为重烃含量在2%以上者大多有热成因气掺和。 图5-27 富含有机质的敞开海沉积物中微生物代谢作用的生化环境剖面图(据Rice&Claypool,1981) 生物成因气的δ13C1值一般为-85‰~-60‰(亦有以-55‰或-58‰为上限者)之间,最低可为-90‰。若有深部热成因气的加入,δ13C1值可升高达-50‰~-45‰。腐殖母质的生物成因气其δ13C值约为-80‰~58‰。有机质进入沉积域后,经过微生物的发酵作用一直到合成甲烷气的过程,实际上都是12C富集的过程。故生物成因气中甲烷的13C含量很低,因而δ13C1值的负值大。生物成因气的δ13C1值随埋藏深度的增加会有所升高。这不仅与少量低温热解成因气的形成有关,也与深部热解成因气的向上运移有关。 目前已发现的生物成因气储量大致占世界已发现天然气总储量的20%左右。其中大约80%在俄罗斯,而俄罗斯的大部分又是在西西伯利亚地区,其勘探前景不可低估。 (二)油型气 油型气指成油有机质(腐泥型和混合型干酪根)在热力作用下以及石油热裂解形成的各种天然气,主要包括石油伴生气、凝析油伴生气和热裂解干气。成油有机质的热演化成烃过程用Ro来表示其阶段和主要产物(图5-28)。 图5-28 有机质成烃演化条件的模式图 成油有机质成熟演化过程中产生的天然气以烃气为主,但仍有数量不等的非烃气。CO2主要形成于深成作用阶段的早中期,N2主要形成于深成阶段的中期,H2S主要形成于深成阶段中期到准变质阶段。产气高峰在深成作用的中晚期,这是因为深成作用中晚期成油有机质液态烃产率明显降低,而产气率逐渐增加,与此同时已生成的液态烃,开始裂解成气,两种成气作用叠加的结果,使产烃气率大增,形成产气高峰。 与成油有机质演化有关的天然气(烃和非烃)随深度的生成模式,如图5-29所示。 成油有机质热降解作用所形成的石油伴生气和热裂解成因干气,都是在较高温度(超过门限温度)下参与热化学反应形成的。石油和凝析油伴生气在化学组成上的基本特点是重烃含量高,一般大于5%;最高可达40%~50%,甚至可超过甲烷含量。而且iC4/nC4常小于1。过成熟干气则以甲烷为主,很少重烃(≤2%)。两者在碳同位素组成上亦有明显差别,由石油伴生气→凝析油伴生气→过成熟干气向13C逐渐富集,δ13C1值增大。分别为-55‰~-40‰,-45‰~-30‰,-35‰。不同演化阶段天然气δ13C1值的分布区间只是概略的,实际情况变化范围可能更大些。此外还必须指出,在原油开始裂解时形成的天然气具有较低的δ13C1值,甚至比石油伴生气更低些(δ13C1值约为-60‰~50‰)。 图5-29 与成油有机质演化有关的天然气(烃和非烃)生成模式图(转引自陈荣书,1994) (三) 煤型气 指腐殖煤及腐殖型煤系有机质在变质作用阶段形成的天然气。其含义与腐泥型有机质在成油演化过程中形成的天然气称为油型气相对应,又称煤系气、煤成气等。 煤系又称含煤岩系,它是指以含有煤层和煤线为特征的沉积岩系。当腐殖有机质高度聚集时便形成腐殖煤,而当其分散存在时便形成暗色泥岩和炭质泥岩,一般把有机碳含量≤15%的称暗色泥岩,在15%~30%之间称炭质泥岩,>30%时叫煤。 腐殖煤及腐殖型干酪根显微镜下观察有3组煤岩显微组成,即镜质组、惰质组和壳质组。镜质组是最主要的组成,它是植物茎、叶等木质纤维组织通过分解和凝胶化作用而形成的,有结构镜质组和无结构镜质组。惰质组又称丝质组,是木质纤维被焚烧或经脱水强氧化后而形成,具丝炭状细胞结构。壳质组也称稳定组,包括孢粉、树脂体、角质体和木栓体等,它们常具清晰的特殊形态和光学性质。上述3种煤岩组分中,挥发分含量以壳质组最多,其次为镜质组,再次为惰质组。壳质组在成煤所有阶段均有烃类生成,镜质组仅从气煤-肥煤阶段才开始生烃,而惰质组则从贫煤(Ro>1.9%)阶段才产生甲烷。3种煤岩组分和几种植物组成的元素分析见图5-30。 图5-30 煤岩显微组分和植物组成的H/C与O/C原子比相关图(据Tissot等,1984) 腐殖有机质的基本结构是带有许多脂肪族短侧链和杂原子官能团的缩合稠环芳烃体系。稠环有较大的稳定性,但侧链和官能团与稠环之间的结合力较弱,热稳定性小,故在不断埋藏和升温过程中逐渐发生脱落,分解形成CO2、H2O、N2、CH4及其同系物等分子简单的挥发物质。 成煤作用的阶段可划分为泥炭化作用和煤化作用两大阶段,前者指高等植物主要在生物化学作用下转变成泥炭的过程。后者又分为成岩作用和变质作用阶段,成岩作用阶段是从泥炭到褐煤的过程,而变质作用阶段主要是在热力作用下由褐煤依次转变为长焰煤、气煤、肥煤、焦煤、瘦煤和贫煤等烟煤至无烟煤的过程。从泥炭到无烟煤的元素组成如图5-31所示。 图5-31 在埋藏过程中从泥炭到无烟煤的元素组成演化(据Durand等,1983) 泥炭化阶段所生成的生物成因气因缺乏保存条件而难以形成聚集。与成油母质相比,腐殖型有机质在成岩作用阶段形成的生物成因气,非烃气含量较高。进入变质作用阶段所形成的天然气称煤型气。其中气煤-肥煤阶段(Ro约0.65%~1.2%)为生成轻质油和C2—C4重烃气的高峰期,从焦煤或瘦煤开始(Ro=1.5%或1.7%),为煤型裂解气主要生成阶段。煤型气中非烃气以CO2生成量最大,N2次之,H2S最少;无锡石油地质中心实验室对不同岩性、不同类型有机质进行了大量的成气热模拟实验和实际资料的研究,得出了主要生气阶段和生气高峰时Ro值的分布和其母质的H/C原子比值,如图5-32所示。 煤型气的化学组成中重烃气含量有时可达10%以上,甲烷气一般占70%~95%。非烃气中普遍含N2和Hg蒸气,也常含CO2,但贫H2S。据戴金星等(1985)资料,我国煤型气的δ13C1值为-41.8‰~-24.9‰;δ13C2值为-27.09‰~-23.81‰,平均值为-25.78‰;δ13C3值为-25.72‰~-19.16‰,平均值为-23.45‰。 图5-32 天然气生成模式图(据张义纲等,1991) (四)无机成因气 对于无机成因气,前面在论及烃类的无机成因中已有所涉及。在此仅就“气”的无机成因问题进行讨论。 Wclham and Craig(1979)在东太平洋海隆热液喷出口观测到射出的甲烷气,从实践上证实了地球内部大量深源无机成因甲烷气的客观存在。在加勒比海深大断裂附近,曾测得规模更大的甲烷气,外逸气中还含有少量乙烷和丙烷(C+2含量达0.5%)。在6300m深处的甲烷浓度为标准海水中甲烷浓度的5000倍,每10日逸出量达1×106m3。 海洋沉积物中广泛分布的甲烷水合物,数量巨大,甚至连赞成有机成因的研究者(Claypool and Kaplan,1974)也承认难以单用细菌作用生成甲烷来解释。而深源无机成因说可提供符合实际情况的解释———由深部形成的甲烷在向地表运移过程中被捕集于泥质沉积物中,在适当温压条件下转变为气水合物。但气水合物中δ13C1值一般较低,这可能是由于甲烷在浅层氧化过程中13C贫化(同位素交换作用使13C富集于CO2中)所致。 关于深源无机成因气的形成机理,据French(1966)、Nordlie(1971)、Gerlach(1980)和Holloway(1981)等对地壳内部岩浆作用的热力学模型的研究结果认为,地壳内部甲烷的稳定性取决于温度、压力和氧的化学有效性。氧的化学有效性用“逸度”表示。高逸度值有利于形成H2O、CO2和SO2,低逸度值有利于还原型化合物如H2S、H2和CH4等的形成和保存。 根据对地幔排气作用的综合研究结果认为,地幔排气过程依其特点可分为两种基本类型:即较高温度、较高氧逸度、较小压力的热排气过程和较低温度、较低氧逸度、较大压力的冷排气过程。前者地幔气以H2O和CO2为主,后者则以CH4和H2为主(陈荣书,1989)。前者相当于火山喷气,后者则相当于岩浆侵入上覆岩层中的脱气作用。 化学组成一般以甲烷占优势,C+2含量很少,一般<1%。常可见少量到微量的烯烃(乙烯或丙烯),且氢、氮、二氧化碳、一氧化碳及氦气含量较高。烃气中δ13C1值变化范围大,从-2‰~-41‰都有,但以-15‰~-35‰区间最为普遍。一般以δ13C1值>-20‰作为无机成因气的较可靠证据。 目前发现纯粹的无机成因气藏(田)不多,但已发现了许多混有无机成因气的气田。如美国中部大陆本得隆起等气田,氮含量高达80%~90%,伴有7%~9%的氦,推断这种气体同深源岩浆成因有关;在俄罗斯科拉半岛钻入超基性岩体的井内,发现含氮量20%~40%、含氦量0.6%~3.7%的天然气,从这种天然气的地质产状及氮-氦组合来看均表明是岩浆成因。我国东营凹陷平方王油田下第三系所产天然气,二氧化碳含量达63%~66%,系喜马拉雅期玄武岩与石灰岩接触后碳酸钙的热分解所致。匈牙利潘农盆地米哈伊气田,呈不整合直接覆盖在结晶基岩之上的第三系砂层上,产出的天然气中CO2含量达95%,CH4仅4.5%,可能来自结晶基岩深处。 图5-33 自然界CH4与CO2共生体系的δ13CCH4和δ13CCO2分布图(据Гуцало,1981)

天然气的成因类型及鉴别
提示:

天然气的成因类型及鉴别

(一)天然气的成因类型 天然气可分为烃类气和非烃类气两大类,在石油和天然气地质领域,天然气一般专指以含甲烷为主的可燃烃类气。烃类气又可分为两类:有机成因的和无机成因的,无机成因烃类泛指由无机质所形成的烃类气,如深源气等;有机成因烃类气是指那些由有机质通过细菌分解(生物成因气)、热分解(热解成因气)或煤化(煤系成因气)作用而形成的烃类气。M.Schoell(1980)将其作了更明确的界定:生物成因的天然气,C2+含量少于0.05%,成熟度小于0.6,它包括陆相(Bt)和海相(Bm)两种不同环境中形成的天然气。热成因的天然气包括与原油共生的潮湿型气体(T),这种天然气C2+含量高于5,成熟度在0.6~1.2之间。另一种热成因的天然气为干燥型气体(TT),C2+含量不会超过5%,多数小于1%,成熟度变化范围大,从0.8到3。按照Tissot等(1974)的意见,这类天然气可根据干酪根类型细分为:海相腐泥质(TTm)型和陆相腐殖质型(TTh)两类。除生物成因和热成因两大类外,还有一类介于两者之间的混合型(M)天然气(图14-5)。由陆相沉积环境腐殖型有机质形成的天然气,往往比由海相沉积环境腐泥型有机质形成的天然气更富含13C(两者的δ13C值相差12左右),而且随着有机质成熟度的增加,不管是由腐殖型有机质还是由腐泥型有机质形成的天然气,它们的δ13C值都趋向增加(图14-6,图14-7)。 图14-5 天然气的成因类型分类(据Schoell,1980) 图14-6 天然气中含碳气体的碳同位素组成(据Deines,1980) 根据多源、多阶段成气理论,天然气成因分类的主要依据是生气有机质的类型、成气作用和有机质演化阶段。张士亚等(1994)把有机成因烃类气分为四大类(表14-1),同时指出δ13C=-29‰是识别天然气源岩有机质母质类型的良好标志,而δ13C=-55‰则是识别天然气成气作用和有机质演化阶段的良好标志。张义纲等(1994)研究了天然气成因,他们根据δ13C值把天然气分为5种成因和12种气:①原生微生物成因(生物气);②原生热解成因(低熟、成熟、高熟的腐殖气和腐泥气);③表生菌解成因(油层、煤层菌解气);④后生半无机成因(热液烃气);⑤无机成因(深源气、高纯二氧化碳气)。 图14-7 海相腐泥质(TTm)和陆相腐殖质(TTh)母岩热成因甲烷的δD-δ13C关系图(据Schoell,1980) 表14-1 有机成因烃类气的分类 (据张士亚,1994) (二)天然气成因类型的碳同位素界定 烷烃的碳同位素组成的一般特征(戴金星,1993)如下: 1.有机烷烃的碳同位素组成 1)有机烷烃气的δ13C值随成熟度(Ro)的增大而增高; 2)有机的同源同期甲烷及其同系物的δ13C值随烷烃分子中碳数的增大而增高; 3)由相同或相近成熟度源岩形成的煤成气甲烷,其δ13C值比油型气对应组分高; 4)甲烷及其同系物中的某些组分被细菌氧化后,会使其剩余组分的碳同位素组成变重。 母质相同但成熟条件不同或成熟度相同而母质不同的条件下形成的天然气,其碳同位素组成有着明显的区别。 2.无机烷烃类碳同位素组成 1)无机甲烷碳同位素的δ13C值大多比有机甲烷高; 2)无机甲烷及其同系物的δ13C值随烷烃气分子中碳数的增加而降低。 图14-8 天然气成因判别图 3.δ13C1特征 生物成因气的δ13C1均值小于-54‰,油田伴生气δ13C1均值介于-54‰~-40‰之间,过成熟气或煤型气的δ13C1均大于-40‰。同时,还可以利用轻烃气体中甲烷及其同系物的比值与δ13C1值划分天然气的成因类型(图14-8)。 4.天然气分类 在天然气的分类判识上存在很多划分标准,现在普遍接受的观点是将天然气按来源分为有机成因气和无机成因气,按有机成因中母质的不同分为油型气和煤型气,按其生成演化阶段分为生物气、生物-热催化过渡带气、热解气、裂解气。戴金星(1993)提出用甲烷、乙烷、丙烷碳同位素来鉴别天然气是否是煤型气和判别有机烷烃气的成因,并提出了区分不同成因天然气的方法和碳同位素界定范围(表14-2)。 表14-2 天然气碳同位素鉴定表 注:δ13C1为甲烷的δ13C值;δ13C2为乙烷的δ13C值;δ13C3为丙烷的δ13C值。 (据戴金星,1993) 5.天然气中δ13CCO2特征 天然气中δ13CCO2的特征是鉴别CO2成因类型及来源的重要指标。δ13CCO2重于-8是无机成因气,轻于-10是有机成因气,当δ13CCO2在两者之间时,可以是有机成因与无机成因的共存区或混合区(Daieta1.,2000)。 天然气甲烷的碳同位素组成随成熟度的增加而增加,乙烷碳同位素组成也随成熟度的增加而增加,只是增加的幅度不如甲烷大(戴金星,1999;戴金星,2005)。因此,除去混源情况外,天然气的乙烷碳同位素组成主要反映天然气的母质来源。而且由于甲烷成因的多源性及其易受到各种成藏次生作用的影响,人们更相信利用乙烷碳同位素组成判识天然气成因的可靠性,一般以C2在-28‰~-30‰作为腐殖型与腐泥型成因天然气的界限。而处于这一区间内则属混源气。 图14-9 塔里木盆地塔河油田原油碳同位素类型曲线 6.天然气的同位素异常 天然气的生成具有阶段性,烃源岩在不同演化阶段生成的天然气以及不同类型的天然气具有不同的地球化学特征。由于在地质条件下成气营力较为复杂,常可看到天然气的甲烷及同系物的碳同位素组成分布倒转或非线性变化的现象,这种气的成因可能与生物降解、异常高温或多源、多阶段复合有关。A.T.James等(1991)认为,来自木质-煤型生气烃源岩的天然气,其受源岩控制的程度大,木质-煤型有机质的天然气,其高分子量的湿气组分的碳同位素组成出现倒转,即正丁烷的碳同位素组成比丙烷轻。戴金星(1989)则认为,甲烷同系物的碳同位素组成轻重的全部倒转是混源(混合)气的特征,这种混合气包括不同类型母质的生成气的混合或同一母质的不同成熟阶段的生成气的混合。高波等(2006)在对塔河油田原油和天然气地球化学特征进行详细研究的基础上,根据油气蕴藏中得到的成藏信息,对塔河油田的油气充注期次进行了探讨。通过对原油不同族组分碳同位素的研究,得出塔河油田原油两期充注的地球化学证据(图14-9)。一般来说,正常原油碳同位素类型曲线符合δ13C饱和烃<δ13C芳烃<δ13C非烃<δ13C沥青质的顺序,而本区原油的沥青质碳同位素普遍变轻,部分原油的非烃碳同位素也比较轻,出现了碳同位素顺序的倒转,这说明本区原油至少经历了两期充注与成藏过程。早期充注的原油成熟度较低,原油及其族组成的碳同位素较轻,在成藏后因遭受生物降解作用,主要残留了非烃和沥青质等重组分;与后期充注的正常原油相混合后,原油饱和烃和芳香烃碳同位素主要表现为后期充注原油的特征,碳同位素相对较重,非烃和沥青质则表现为两者的混源特征而相对较轻。 (三)天然气成因类型的鉴别 1.有机甲烷和无机甲烷的鉴别 (1)有机成因甲烷的鉴别 关于一些有机成因甲烷的鉴别,目前较为统一的认识(戴金星,1992)是:①生物气δ13C1-55‰,大部分大于-53‰;②生物气甲烷许多不与重烃气共生,有的仅有微量或痕量乙烷和丙烷与之共生,总重烃气常小于0.5%(柴达木盆地生物气甲烷与之共生重烃气小于0.2%),C1/C2+3>170,大部分在200以上,是干气;相反,热解气甲烷和乙烷、丙烷及丁烷共生,C1/C2+3大部分小于15‰,绝大部分小于10‰,为湿气;③生物气甲烷与油不共生,热解气甲烷与油共生;④图解法,用δ13C-C1/C2+3鉴别图版(图14-10),可区分生物气甲烷和热解气甲烷,前者在I1和I2区,后者在II1区。 图14-10 δ13C-C1/C2+3鉴别图版 (2)原油伴生(热解)气甲烷和油型裂解气甲烷鉴别 ①原油伴生气δ13C1值大于-55‰至-40‰;油型裂解气δ13C1值大于-37‰至小于-30‰。②原油伴生气甲烷与之共存的重烃气含量大于5%,通常大于8%,C1/C2+3绝大部分小于10‰,是湿气;油型裂解气甲烷与之共存的重烃气含量小于5%,常常在3%下,往往没有丁烷。③原油伴生气甲烷通常为原油的附属物,溶解在原油中,油型裂解气甲烷往往在游离气(气层气)中。④图解法,用δ13C-C1/C2+3鉴别图版(图14-10),可区分原油伴生气甲烷和油型裂解气甲烷,前者在II1区,后者在Ⅱ2和Ⅲ1区。 戴金星在根据我国松辽、渤海湾、四川、柴达木、鄂尔多斯、塔里木、准噶尔、琼东南和东海等17个盆地、14个煤矿、5个温(热)泉点1007个气样的碳、氢同位素、轻烃、气组分等许多项目,总计10854个分析数据,同时参考国外许多有关资料的基础上,总结出有机和无机烷烃气识别的一般规律:除高成熟和过成熟的极少量煤型气甲烷外,凡甲烷碳同位素(δ13C1)大于-30‰的是无机甲烷,绝大部分有机甲烷δ13C1值小于-30‰。表14-3为国内外大量无机甲烷δ13C1值均大于-30的实例。 表14-3 世界上一些无机甲烷碳同位素组成 可以用地质综合分析法区别δ13C1>-30的无机甲烷与煤型气甲烷:煤型气甲烷通常产出在煤系中(澳大利亚Cooper盆地)或在煤系之上(中国文留气藏和汪家屯气田、中欧盆地Rothliegende气藏)或在煤系之下(中国华北油田坝县地区)。无机甲烷产出处,通常没有煤系,往往在火山区、地热区或深大断裂、俯冲带、洋脊附近,如我国腾冲硫磺塘和甘孜拖坝镇以及新西兰地热区。 2.有机烷烃气和无机烷烃气的鉴别 天然气甲烷的碳同位素组成随成熟度的增加而增加,乙烷碳同位素组成也随成熟度的增加而增加,只是增加的幅度不如甲烷大。因此,天然气的乙烷碳同位素组成如果除去混源外,主要反映天然气的母质来源。而且由于甲烷成因的多源性及其易受到各种成藏次生作用的影响,人们更相信利用乙烷碳同位素组成判识成因的可靠性,一般地以δ13C2在-28‰~-30‰作为腐殖型与腐泥型成因天然气的界限,而处于这一区间附近则属混源气。在热演化过程中乙烷碳同位素分馏较弱,因而,δ13C2是划分天然气母质类型的有效指标。乙烷、甲烷碳同位素的差值Δ13C2-1随热演化程度增高而减小,且基本不受母质类型的影响,可用于确定成熟度。因此,应用δ13C2-Δ13C2-1关系图可区分不同成因类型的天然气。 烷烃气的碳同位素系列对比可鉴别有机和无机烷烃气。所谓烷烃气碳同位素系列系指依烷烃气分子碳数顺序递增,δ13C值依次递增或递减。递增者(δ13C1δ13C2>δ13C3)称为负碳同位素系列。有机烷烃气具有正碳同位素系列,我国和国外含油气盆地有大量这样的有机烷烃气。无机烷烃气具有负碳同位素系列,这方面国内外目前研究均较薄弱。在我国松辽盆地北部芳深1井,东海盆地天外天构造新近系中,都发现具有负碳同位素系列特征的无机烷烃气。此外,在美国和苏联也有发现。 图14-11 C7系统三角图版 C7系统三角图版对于湿度较大的有机烷烃气的鉴别,可借助与之共生的同源的C7系统轻烃,能较好确定烷烃气属类。C7系统的化合物包括三类:正庚烷(nC7)、甲基环己烷(MCC6)及各种结构的二甲基环戊烷(ΣDMCC5)。正庚烷主要来自藻类和细菌,对成熟作用十分敏感,是良好的成熟度指标。各种结构二甲基环戊烷主要来自水生生物的类脂化合物。甲基环己烷主要来自高等植物木质素、纤维素、醣类等,是反映陆源母质类型的良好参数,热力学性质相对稳定。因此,以上述三类化合物为顶点编制的三角图,能较好判别有机成因气,从而也就可鉴别有机烷烃气。图14-11是我国C7系统三类化合物资料编制的三角图版:I区为油型气区,即油型烷烃气区;II区为煤型气区,即煤成烷烃气区。例如鄂尔多斯盆地塞18井的天然气中C7系统轻烃三类化合物各占比例:nC7为38.4%,MCC6为6.3%,ΣDMCC5为55.3%,以这些数据标在图上得点A落在I区,因此,它为油型烷烃气;再如渤海湾盆地苏桥气田苏402井天然气中C系统轻烃三类化合物各占比例:nC7为30.9%,MCC6为48.1%,ΣDM-CC5为21.0%,把这些数据标在图上得点B落在II区,因此,它为煤型烷烃气。 鉴别天然气中某组分的成因类型,不能推断天然气中其他组分也属同一成因。确定天然气的成因,对各组分都进行成因鉴别是最科学的。但这样要花很大人力与财力,一般只鉴别天然气中几个主要组分的成因类型,说明该天然气的主要成因从属。 用多项指标综合确定组分或天然气的成因,比单一指标鉴别更可靠。一定要把用指标识别气的成因类型与具体地质条件结合起来。戴金星(1992)根据“六五”和“七五”期间科研项目鉴别各类天然气的研究成果,同时参考了国外有关文献,概括出各类成因天然气综合鉴别表(表14-4)。该表可用来鉴别天然气组分,以至天然气的成因属类。 表14-4 不同成因类型天然气的综合鉴别特征 续表 (据戴金星,1993,简化) 天然气气源对比的关键是挑选合适的气源对比指标,如天然气组分、碳同位素、轻烃及轻烃同位素,判断出天然气性质,再结合岩石的性质和分布,确定天然气的烃源岩。 甲烷、乙烷、正构烷、异构烷的碳同位素在识别天然气成因及其母质类型中已发挥了重要作用,但C6以上单体烃碳同位素分布信息在油气/源岩对比研究中还停留在看图识字的水平上,还有很大潜力。正构烷、异构烷的碳同位素分布配合其碳数分布可以更可靠地确认油气生源及其烃源岩,甚至揭示其生烃机制。干酪根热解生烃、可溶有机质生烃、有机质经过微生物改造后生烃等不同的生烃机制,即未熟低熟油生烃机制和成熟油生烃机制的不同,在烃类碳同位素分布上理应有所反映。张林晔等认为,济阳坳陷未熟油主要源自可溶有机质(ZhangLY, et al.,2004)。日本Tho等通过实验说明,木质素经过微生物改造后,成熟门槛从300℃降到200℃(ThoK, et al.,2004)。ZhangYG于1979年在国内、1981年在英国刊物上首先提出未熟、低熟油的概念。 然而,由于油气形成的漫长性和本身的可流动性,在运移、聚集甚至储层对比中会经历一系列的变化。这样就会模糊甚至完全掩盖这些原生的相似性,从而大大增加对比的多解性和复杂性。为此,合理地选用对比参数,并综合各种地质及同位素地球化学资料是十分必要的。 3.轻烃单体苯、甲苯同位素的油(气)源对比 采用天然气中C-C稳定碳同位素组成进行气源对比是目前国内外最常用的方法,但是这种对比的局限性在于这些组成不仅受有机质类型控制,而且在不同程度上还要受到热演化程度、生物降解作用、运移等非成因因素的影响,在某些情况下,使气源对比的可靠性降低。因此,必须寻找到不受上述作用干扰、主要与成因有关的气源对比指标。近年来,天然气中苯和甲苯含量有时也用作对比指标。蒋助生等(2000)利用热模拟与在线同位素分析技术,从天然气及气源岩热解产物中的甲烷、乙烷、苯和甲苯的稳定碳同位素组成入手,结合塔里木盆地、鄂尔多斯盆地和莺-琼盆地的地质实例进行了对比研究,探讨了这些组成作为气源对比参数的可行性。发现热成熟度和运移效应对苯、甲苯碳同位素组成影响较小。研究结果表明,同一类型气源岩热模拟产物中苯、甲苯同位素组成受热成熟度的影响不大。在400~600℃热模拟实验中,除个别点外,变化小于1,说明它们基本上不受热成熟度的影响。同一类型的天然气、源岩的苯和甲苯碳同位素组成没有太大的差异,不同层位气源岩苯、甲苯碳同位素组成有明显区别,大多相差3以上。甲苯脱吸附实验表明,甲苯碳同位素组成在脱吸附过程中基本上不发生变化;而热成熟度和运移效应对C1—C2碳同位素组成影响较大,同一样品在不同热成熟度阶段甲烷碳同位素组成的变化可达10左右,乙烷碳同位素组成的变化可达5左右。甲烷的扩散效应可使甲烷碳同位素组成变化达15左右,吸附效应可使甲烷碳同位素组成变化达20左右。苯、甲苯碳同位素组成可作为气源对比的有效指标。甲苯碳同位素值与其他气源对比指标相结合使用,不仅可以有效地判识气源,而且还可以判识天然气成熟度。利用苯、甲苯碳同位素组成指标在我国塔里木等盆地气源对比中取得了较好的效果。杨池银(2003)通过对板桥凹陷深层及奥陶系潜山均钻遇的乙烷以上具异常重碳同位素的天然气研究,使用轻烃族组成、C轻烃组成、环烷指数及苯、甲苯碳同位素证实,气源主要为板桥凹陷古近系偏腐殖型烃源岩。