零基础学Python需要多久
如果你是自学,从零基础学习python,需要大约半年一年半的时间,这取决于每个人的理解。当然,如果你有其他编程语言的经验,这是比较快的开始。你可以写一些简单的Python语言中使用2 ~ 3个月。只要你学习系统,可以更好的掌握Python技能。如果有一个有经验的人带着自己学习还是非常不错的,尤其是零基础的,一般6个月就可以基本学会。如果报班培训,有专业老师指导和答疑,会快一些。一般Python的培训时间都在五个月左右,一般会用五周左右的时间学习Python核心编程,通过Python语言基础知识以及Linux相关知识的学习,了解什么是数据库,掌握Python的基础内容。第二阶段会用五周左右的时间学习全栈开发的内容。第三阶段是网络爬虫的学习,一般是3周左右。第四阶段人工智能的学习。最后就是5周左右的就业指导。关于Python培训的更多相关知识,建议到千锋教育进行更详细的了解,目前,千锋教育已在北京、深圳、上海、广州、郑州、大连等20余个核心城市建立直营校区,等待你的随听。
自学Python需要多久?
一周或者一个月。如果完全靠自己自学,又是从零基础开始学习Python的情况下,按照每个人的学习和理解能力的不同,我认为大致上需要半年到一年半左右的时间。当然了,Python学习起来还是比较简单的,如果有其他编程语言经验,入门Python还是非常快的,花1-2个月左右的时间学完基础,就可以自己编写一些小的程序练练手了,5-6个月的时间就可以上手做项目了。从一定程度上来说,一些零基础的初学者想要利用两个月的时间掌握好Python是不太可能的,学习完Python后想要应聘相对应的工作岗位,即便是选择最快的学习方式也是很难实现的,无法快速实现就业。
学python看什么书
Python 从入门到精通推荐看的书籍: 基础篇: 1.《笨方法学Python》。《笨方法学Python》的英文版,最初的几章有点枯燥,但如果把书里面所有代码都敲一遍,确实能够把基础打好。 2.《Python学习手册》。 这种外国人写的书,都有共同的特点,特别详细,每个知识点给你解释透透的,看的时候可以当作一个字典来翻,这本书确实是面向初学者的。 进阶篇: 1.《流畅的python》。 这本书的作者水平有点高,洋洋洒洒写了这么厚一本,关键是读的时候啊,感觉到处都有收获。前面几章是关于数据结构的,用上合适的数据结构,可以让代码更简洁,也可以让代码执行得更有效率。 2.《Python Cookbook》。 又是一本大部头著作,图灵的书真的挺好,缺点就是太厚了。cookbook类的书呢,大体遵循的规律是,面对那一个一个具体的问题,我们该怎么办。有点类似Q&A,实操性拉满。这本书还把不同的问题给你分门别类了,查起来挺方便。看过后对于代码质量的提升,很有帮助。 就业篇: 在就业篇里就需要分方向了。就业通常只学习python语法是不够的,还得掌握具体的学科知识。 1.web方向: (1)《Flask Web开发》。 公司如果用python做web大多是初创的,大多用了flask,因为flask是一个小而美的框架,积累了大量第三方库,值得一学。 (2)《精通Django 3 Web开发》。 2.人工智能方向: (1)《深度学习》。 深度学习挺有名的书,理论深度足够。俗称“花书”。 (2)《利用Python进行数据分析》。 用python做数据分析就得读这本。
0基础自学python,有入门书籍推荐下么
AlphaGo都在使用的Python语言,是最接近AI的编程语言。 教育部考试中心近日发布了“关于全国计算机等级(NCRE)体系调整”的通知,决定自2018年3月起,在全国计算机二级考试中加入了“Python语言程序设计”科目。 9个月前,浙江省信息技术课程改革方案已经出台,Python确定进入浙江省信息技术教材,从2018年起浙江省信息技术教材编程语言将会从vb更换为Python。 小学生都开始学Python了,天呐撸,学习Python看完这些准没错。 安利一波书单 Python入门 《Python编程快速上手——让繁琐工作自动化》 作者:【美】AlSweigart(斯维加特) Python3编程从入门到实践 亚马逊畅销Python编程图书 本书是一本面向实践的Python编程实用指南。本书不仅介绍了Python语言的基础知识,而且还通过项目实践教会读者如何应用这些知识和技能。本书的第一部分介绍了基本Python编程概念,第二部分介绍了一些不同的任务,通过编写Python程序,可以让计算机自动完成它们。第二部分的每一章都有一些项目程序,供读者学习。每章的末尾还提供了一些习题和深入的实践项目,帮助读者巩固所学的知识,附录部分提供了所有习题的解答。 《“笨办法”学Python(第3版)》 作者:【美】ZedA.Shaw 《“笨办法”学Python(第3版)》是一本Python入门书籍,适合对计算机了解不多,没有学过编程,但对编程感兴趣的读者学习使用。这本书以习题的方式引导读者一步一步学习编程,从简单的打印一直讲到完整项目的实现,让初学者从基础的编程技术入手,最终体验到软件开发的基本过程。 《“笨办法”学Python(第3版)》结构非常简单,共包括52个习题,其中26个覆盖了输入/输出、变量和函数三个主题,另外26个覆盖了一些比较高级的话题,如条件判断、循环、类和对象、代码测试及项目的实现等。每一章的格式基本相同,以代码习题开始,按照说明编写代码,运行并检查结果,然后再做附加练习。 《Python编程初学者指南》 作者:【美】MichaelDawson 《Python编程初学者指南》尝试以轻松有趣的方式来帮助初学者掌握Python语言和编程技能。全书共12章,每一章都会用一个完整的游戏来演示其中的关键知识点,并通过编写好玩的小软件这种方式来学习编程,引发读者的兴趣,降低学习的难度。每章最后都会对该章的知识点进行小结,还会给出一些小练习让读者试试身手。作者很巧妙的将所有编程知识嵌入到了这些例子中,真正做到了寓教于乐。 《数据结构(Python语言描述)》 作者:【美】KennethA.Lambert(兰伯特) 在计算机科学中,数据结构是一门进阶性课程,概念抽象,难度较大。Python语言的语法简单,交互性强。用Python来讲解数据结构等主题,比C语言等实现起来更为容易,更为清晰。 本书第1章简单介绍了Python语言的基础知识和特性。第2章到第4章对抽象数据类型、数据结构、复杂度分析、数组和线性链表结构进行了详细介绍,第5章和第6章重点介绍了面向对象设计的相关知识、第5章包括接口和实现之间的重点差异、多态以及信息隐藏等内容,第6章主要讲解继承的相关知识,第7章到第9章以栈、队列和列表为代表,介绍了线性集合的相关知识。第10章介绍了各种树结构,第11章讲解了集和字典的相关内容,第12章介绍了图和图处理算法。每章最后,还给出了复习题和案例学习,帮助读者巩固和思考。 像计算机科学家一样思考Python》 作者:【美】AllenB.Downey 本书按照培养读者像计算机科学家一样的思维方式的思路来教授Python语言编程。全书贯穿的主体是如何思考、设计、开发的方法,而具体的编程语言,只是提供一个具体场景方便介绍的媒介。并不是一本介绍语言的书,而是一本介绍编程思想的书。和其他编程设计语言书籍不同,它不拘泥于语言细节,而是尝试从初学者的角度出发,用生动的示例和丰富的练习来引导读者渐入佳境。 Python进阶 Python高级编程(第2版)》 作者:【波兰】Micha?Jaworski(贾沃斯基),【法】TarekZiadé(莱德) 本书基于Python3.5版本进行讲解,通过13章的内容,深度揭示了Python编程的高级技巧。本书从Python语言及其社区的现状开始介绍,对Python语法、命名规则、Python包的编写、部署代码、扩展程序开发、管理代码、文档编写、测试开发、代码优化、并发编程、设计模式等重要话题进行了全面系统化的讲解。 本书适合想要进一步提高自身Python编程技能的读者阅读,也适合对Python编程感兴趣的读者参考学习。全书结合典型且实用的开发案例,可以帮助读者创建高性能的、可靠且可维护的Python应用。 《Python高性能编程》 作者:【美】戈雷利克(MichaGorelick),欧日沃尔德(IanOzsvald) 本书共有12章,围绕如何进行代码优化和加快实际应用的运行速度进行详细讲解。本书主要包含以下主题:计算机内部结构的背景知识、列表和元组、字典和集合、迭代器和生成器、矩阵和矢量计算、并发、集群和工作队列等。最后,通过一系列真实案例展现了在应用场景中需要注意的问题。 本书适合初级和中级Python程序员、有一定Python语言基础想要得到进阶和提高的读者阅读 《Python极客项目编程》 作者:【美】MaheshVenkitachalam Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。通过Python编程,我们能够解决现实生活中的很多任务。 本书通过14个有趣的项目,帮助和鼓励读者探索Python编程的世界。全书共14章,分别介绍了通过Python编程实现的一些有趣项目,包括解析iTunes播放列表、模拟人工生命、创建ASCII码艺术图、照片拼接、生成三维立体图、创建粒子模拟的烟花喷泉效果、实现立体光线投射算法,以及用Python结合Arino和树莓派等硬件的电子项目。本书并不介绍Python语言的基础知识,而是通过一系列不简单的项目,展示如何用Python来解决各种实际问题,以及如何使用一些流行的Python库。 《Python核心编程(第3版)》 作者:【美】WesleyChun(卫斯理春) 本书是经典畅销图书《Python核心编程(第二版)》的全新升级版本,总共分为3部分。第1部分讲解了Python的一些通用应用,包括正则表达式、网络编程、Internet客户端编程、多线程编程、GUI编程、数据库编程、MicrosoftOffice编程、扩展Python等内容。第2部分讲解了与Web开发相关的主题,包括Web客户端和服务器、CGI和WSGI相关的Web编程、DiangoWeb框架、云计算、高级Web服务。第3部分则为一个补充/实验章节,包括文本处理以及一些其他内容。 本书适合具有一定经验的Python开发人员阅读。 Python机器学习——预测分析核心算法》 作者:【美】MichaelBowles(鲍尔斯) 在学习和研究机器学习的时候,面临令人眼花缭乱的算法,机器学习新手往往会不知所措。本书从算法和Python语言实现的角度,帮助读者认识机器学习。 本书专注于两类核心的“算法族”,即惩罚线性回归和集成方法,并通过代码实例来展示所讨论的算法的使用原则。全书共分为7章,详细讨论了预测模型的两类核心算法、预测模型的构建、惩罚线性回归和集成方法的具体应用和实现。 《Python机器学习实践指南》 作者:【美】AlexanderT.Combs 机器学习是近年来渐趋热门的一个领域,同时Python语言经过一段时间的发展也已逐渐成为主流的编程语言之一。本书结合了机器学习和Python语言两个热门的领域,通过利用两种核心的机器学习算法来将Python语言在数据分析方面的优势发挥到极致。 全书共有10章。第1章讲解了Python机器学习的生态系统,剩余9章介绍了众多与机器学习相关的算法,包括各类分类算法、数据可视化技术、推荐引擎等,主要包括机器学习在公寓、机票、IPO市场、新闻源、内容推广、股票市场、图像、聊天机器人和推荐引擎等方面的应用。 《精通Python自然语言处理》 作者:【印度】DeeptiChopra,NisheethJoshi,ItiMathur 自然语言处理是计算语言学和人工智能之中与人机交互相关的领域之一。 本书是学习自然语言处理的一本综合学习指南,介绍了如何用Python实现各种NLP任务,以帮助读者创建基于真实生活应用的项目。全书共10章,分别涉及字符串操作、统计语言建模、形态学、词性标注、语法解析、语义分析、情感分析、信息检索、语篇分析和NLP系统评估等主题。 本书适合熟悉Python语言并对自然语言处理开发有一定了解和兴趣的读者阅读参考。 Python数据科学指南》 作者:【印度】GopiSubramanian(萨伯拉曼尼安) 60多个实用的开发技巧,帮你探索Python及其强大的数据科学能力 Python作为一种高级程序设计语言,凭借其简洁、易读及可扩展性日渐成为程序设计领域备受推崇的语言,并成为数据科学家的首选之一。 本书详细介绍了Python在数据科学中的应用,包括数据探索、数据分析与挖掘、机器学习、大规模机器学习等主题。每一章都为读者提供了足够的数学知识和代码示例来理解不同深度的算法功能,帮助读者更好地掌握各个知识点。 本书内容结构清晰,示例完整,无论是数据科学领域的新手,还是经验丰富的数据科学家都将从中获益。 《用Python写网络爬虫》 作者:【澳】RichardLawson(理查德劳森) 本书讲解了如何使用Python来编写网络爬虫程序,内容包括网络爬虫简介,从页面中抓取数据的三种方法,提取缓存中的数据,使用多个线程和进程来进行并发抓取,如何抓取动态页面中的内容,与表单进行交互,处理页面中的验证码问题,以及使用Scarpy和Portia来进行数据抓取,并在最后使用本书介绍的数据抓取技术对几个真实的网站进行了抓取,旨在帮助读者活学活用书中介绍的技术。 本书适合有一定Python编程经验,而且对爬虫技术感兴趣的读者阅读。 《贝叶斯思维:统计建模的Python学习法》 作者:【美】AllenB.Downey 这本书帮助那些希望用数学工具解决实际问题的人们,仅有的要求可能就是懂一点概率知识和程序设计。而贝叶斯方法是一种常见的利用概率学知识去解决不确定性问题的数学方法,对于一个计算机专业的人士,应当熟悉其应用在诸如机器翻译,语音识别,垃圾邮件检测等常见的计算机问题领域。 Python自然语言处理》 作者:【美】StevenBird,EwanKlein,EdwardLoper 自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究能够实现人与计算机之间用自然语言进行有效通信的各种理论和方法,涉及所有用计算机对自然语言进行的操作。 《Python自然语言处理》是自然语言处理领域的一本实用入门指南,旨在帮助读者学习如何编写程序来分析书面语言。《Python自然语言处理》基于Python编程语言以及一个名为NLTK的自然语言工具包的开源库,但并不要求读者有Python编程的经验。全书共11章,按照难易程度顺序编排。第1章到第3章介绍了语言处理的基础,讲述如何使用小的Python程序分析感兴趣的文本信息。第4章讨论结构化程序设计,以巩固前面几章中介绍的编程要点。第5章到第7章介绍语言处理的基本原理,包括标注、分类和信息提取等。第8章到第10章介绍了句子解析、句法结构识别和句意表达方法。第11章介绍了如何有效管理语言数据。后记部分简要讨论了NLP领域的过去和未来。 本书的实践性很强,包括上百个实际可用的例子和分级练习。可供读者用于自学,也可以作为自然语言处理或计算语言学课程的教科书,还可以作为人工智能、文本挖掘、语料库语言学等课程的补充读物。 Python数据分析》 作者:【印尼】IvanIdris Python是一种多范型编程语言,既适用于面向对象的应用开发,又适合函数式设计模式。Python已经成为数据科学家进行数据分析、可视化以及机器学习的一种理想编程语言,它能帮助你快速提升工作效率。 本书将会带领新手熟悉Python数据分析相关领域的方方面面,从数据检索、清洗、操作、可视化、存储到高级分析和建模。同时,本书着重讲解一系列开源的Python模块,诸如NumPy、SciPy、matplotlib、pandas、IPython、Cython、scikit-learn和NLTK等。此外,本书还介绍了数据可视化、信号处理、时间序列分析、数据库、预测性分析和机器学习等主题。通过阅读本书,你将华丽变身数据分析高手。